Sphere - Fossil Crinoid/Cephalopod Assemblage
SKU:
ITEM# SPHERE-Fossil-0003
$150.00
$120.00
$120.00
Unavailable
per item
Late Jurassic- 150 mya
Henan Province, China
ITEM# SPHERE-Fossil-0003
This beautifully colored fossil crinoid sphere is approximately 3 3/4 inches in diameter. This fossil sphere contains a number of cephalopod and crinoid species from the Jurassic of China.
The earliest known crown-group crinoids date to the Ordovician. There are two competing hypotheses pertaining to the origin of the group: the traditional viewpoint holds that crinoids evolved from within the blastozoans (the eocrinoids and their derived descendants the cystoids), whereas the most popular alternative suggests that the crinoids split early from among the edrioasteroids. The debate is difficult to settle, in part because all three candidate ancestors share many characteristics, including radial symmetry, calcareous plates, and stalked or direct attachment to the substrate.
The crinoids underwent two periods of abrupt adaptive radiation; the first during the Ordovician, the other after they underwent a selective mass extinction at the end of the Permian period. This Triassic radiation resulted in forms possessing flexible arms becoming widespread; motility, predominantly a response to predation pressure, also became far more prevalent. This radiation occurred somewhat earlier than the Mesozoic marine revolution, possibly because it was mainly prompted by increases in benthic predation, specifically of echinoids. After the end-Permian extinction, crinoids never regained the morphological diversity they enjoyed in the Paleozoic; they occupied a different region of morphospace, employing different ecological strategies from those that had proven so successful in the Paleozoic.
The long and varied geological history of the crinoids demonstrates how well the echinoderms have adapted to filter-feeding. The fossils of other stalked filter-feeding echinoderms, such as blastoids, are also found in the rocks of the Palaeozoic era. These extinct groups can exceed the crinoids in both numbers and variety in certain horizons. However, none of these others survived the crisis at the end of the Permian period.
The traditional view of cephalopod evolution holds that they evolved in the Late Cambrian from a monoplacophoran-like ancestor] with a curved, tapering shell, which was closely related to the gastropods (snails). The similarity of the early shelled cephalopod Plectronoceras to some gastropods was used in support of this view. The development of a siphuncle would have allowed the shells of these early forms to become gas-filled (thus buoyant) in order to support them and keep the shells upright while the animal crawled along the floor, and separated the true cephalopods from putative ancestors such as Knightoconus, which lacked a siphuncle. Neutral or positive buoyancy (i.e. the ability to float) would have come later, followed by swimming in the Plectronocerida and eventually jet propulsion in more derived cephalopods.
However, some morphological evidence is difficult to reconcile with this view, and the re-description of Nectocaris pteryx, which did not have a shell and appeared to possess jet propulsion in the manner of "derived" cephalopods, complicated the question of the order in which cephalopod features developed. Their position within the Mollusca is currently wide open to interpretation - see Mollusca#Phylogeny.
Early cephalopods were likely predators near the top of the food chain. They underwent pulses of diversification during the Ordovician period to become diverse and dominant in the Paleozoic and Mesozoic seas. In the Early Palaeozoic, their range was far more restricted than today; they were mainly constrained to sub-littoral regions of shallow shelves of the low latitudes, and usually occur in association with thrombolites. A more pelagic habit was gradually adopted as the Ordovician progressed. Deep-water cephalopods, whilst rare, have been found in the Lower Ordovician - but only in high-latitude waters. The mid Ordovician saw the first cephalopods with septa strong enough to cope with the pressures associated with deeper water, and could inhabit depths greater than 100–200 m. The direction of shell coiling would prove to be crucial to the future success of the lineages; endogastric coiling would only permit large size to be attained with a straight shell, whereas exogastric coiling - initially rather rare - permitted the spirals familiar from the fossil record to develop, with their corresponding large size and diversity. (Endogastric mean the shell is curved so as the ventral or lower side is longitudinally concave (belly in); exogastric means the shell is curve so as the ventral side is longitudinally convex (belly out) allowing the funnel to be pointed backwards beneath the shell.)
Henan Province, China
ITEM# SPHERE-Fossil-0003
This beautifully colored fossil crinoid sphere is approximately 3 3/4 inches in diameter. This fossil sphere contains a number of cephalopod and crinoid species from the Jurassic of China.
The earliest known crown-group crinoids date to the Ordovician. There are two competing hypotheses pertaining to the origin of the group: the traditional viewpoint holds that crinoids evolved from within the blastozoans (the eocrinoids and their derived descendants the cystoids), whereas the most popular alternative suggests that the crinoids split early from among the edrioasteroids. The debate is difficult to settle, in part because all three candidate ancestors share many characteristics, including radial symmetry, calcareous plates, and stalked or direct attachment to the substrate.
The crinoids underwent two periods of abrupt adaptive radiation; the first during the Ordovician, the other after they underwent a selective mass extinction at the end of the Permian period. This Triassic radiation resulted in forms possessing flexible arms becoming widespread; motility, predominantly a response to predation pressure, also became far more prevalent. This radiation occurred somewhat earlier than the Mesozoic marine revolution, possibly because it was mainly prompted by increases in benthic predation, specifically of echinoids. After the end-Permian extinction, crinoids never regained the morphological diversity they enjoyed in the Paleozoic; they occupied a different region of morphospace, employing different ecological strategies from those that had proven so successful in the Paleozoic.
The long and varied geological history of the crinoids demonstrates how well the echinoderms have adapted to filter-feeding. The fossils of other stalked filter-feeding echinoderms, such as blastoids, are also found in the rocks of the Palaeozoic era. These extinct groups can exceed the crinoids in both numbers and variety in certain horizons. However, none of these others survived the crisis at the end of the Permian period.
The traditional view of cephalopod evolution holds that they evolved in the Late Cambrian from a monoplacophoran-like ancestor] with a curved, tapering shell, which was closely related to the gastropods (snails). The similarity of the early shelled cephalopod Plectronoceras to some gastropods was used in support of this view. The development of a siphuncle would have allowed the shells of these early forms to become gas-filled (thus buoyant) in order to support them and keep the shells upright while the animal crawled along the floor, and separated the true cephalopods from putative ancestors such as Knightoconus, which lacked a siphuncle. Neutral or positive buoyancy (i.e. the ability to float) would have come later, followed by swimming in the Plectronocerida and eventually jet propulsion in more derived cephalopods.
However, some morphological evidence is difficult to reconcile with this view, and the re-description of Nectocaris pteryx, which did not have a shell and appeared to possess jet propulsion in the manner of "derived" cephalopods, complicated the question of the order in which cephalopod features developed. Their position within the Mollusca is currently wide open to interpretation - see Mollusca#Phylogeny.
Early cephalopods were likely predators near the top of the food chain. They underwent pulses of diversification during the Ordovician period to become diverse and dominant in the Paleozoic and Mesozoic seas. In the Early Palaeozoic, their range was far more restricted than today; they were mainly constrained to sub-littoral regions of shallow shelves of the low latitudes, and usually occur in association with thrombolites. A more pelagic habit was gradually adopted as the Ordovician progressed. Deep-water cephalopods, whilst rare, have been found in the Lower Ordovician - but only in high-latitude waters. The mid Ordovician saw the first cephalopods with septa strong enough to cope with the pressures associated with deeper water, and could inhabit depths greater than 100–200 m. The direction of shell coiling would prove to be crucial to the future success of the lineages; endogastric coiling would only permit large size to be attained with a straight shell, whereas exogastric coiling - initially rather rare - permitted the spirals familiar from the fossil record to develop, with their corresponding large size and diversity. (Endogastric mean the shell is curved so as the ventral or lower side is longitudinally concave (belly in); exogastric means the shell is curve so as the ventral side is longitudinally convex (belly out) allowing the funnel to be pointed backwards beneath the shell.)